MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]








                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]






Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .

O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]

O teorema afirma

Onde

  •  é um operador hamiltoniano, dependendo de um parâmetro contínuo  ,
  • , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de  ,
  •  é a energia (autovalor) do estado , ie  .


Note que há uma quebra do teorema de Hellmann-Feynman próximo a pontos críticos quânticos no limite termodinâmico.[5

Comments