MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* / . f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ []
G { f [dd]} ´[d] G* / . f [d] G* dd [G]
- [ G* /. ] [ []
G { f [dd]} ´[d] G* / . f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ []]
G { f [dd]} ´[d] G* / . f [d] G* dd [G]
Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .
O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]
O teorema afirma
Onde
- é um operador hamiltoniano, dependendo de um parâmetro contínuo ,
- , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de ,
- é a energia (autovalor) do estado , ie .
Note que há uma quebra do teorema de Hellmann-Feynman próximo a pontos críticos quânticos no limite termodinâmico.[5
Comments
Post a Comment